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Two-dimensional laminar natural convection heat transfer in slender rectangular cavities 
equipped with two small vertical partitions, located in the middle of horizontal walls, is 
studied numerically. The evaluations are carried out for cavity aspect ratios up to 45 and 
for Grashof numbers, based on the cavity height, up to 5 x 10 s. As shown, for this range 
of aspect ratios and Grashof numbers, two small vertical partitions of the same length, 
made of glass and located in the mid-plane of the cavity, may reduce the cavity mean as 
well as peak Nusselt numbers by up to 6 and 27 percent, respectively. 
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I n t r o d u c t i o n  

Many numerical works of natural convection heat transfer in 
square cavities or in rectangular cavities with lower aspect 
ratios have been published until present. In the original works 
of Wilkes and Churchill (1966), Newell and Schmidt (1970) and 
Chu and Churchill (1977) researchers chose the vorticity-stream 
function approach to solve (using the finite-difference 
techniques) the vorticity, energy and stream function equations. 
Because of the suitability for numerical solution this approach 
has been adopted later in several numerical studies. 

For slender rectangular cavities, very interesting works of 
Korpela et al. (1982) and of Lee and Korpela (1983) were 
published. In both studies authors describe the fluid-flow 
regimes (transition, multiceilular and conduction) occurring in 
slender rectangular cavities. As a function of the Grashof and 
Prandtl numbers the cavity heat transfer and fluid-flow 
distributions are discussed for aspect ratios ranging from 10-40. 
Primarily the study of Lee and Korpela (1983) gives the detailed 
description of the multicellular fluid-flow regime, which may 
be developed in slender cavities as the consequence of the 
hydrodynamic instability (l~rgholz 1978). In this, for slender 
cavities very common regime, the heat is transferred along the 
finite number of convection cells. Provided that the Grashof 
number is sufficiently high, the occurrence of these cells may 
be expected in the air cavities with aspect ratios, R = H / L  > 12. 

Closely related to the present study are some results of both 
experimental and numerical investigations on cavity with 
vertical partitions, located on the cavity horizontal walls, which 
were published. In 1982 Bejan presented a numerical study 
aimed at the determination of how both horizontal and vertical 
internal obstructions may affect the cavity heat transfer for 
aspect ratios, R, ranging from 0.5--10. Compared with the cavity 
without any internal obstruction in which the convection- 
dominated regime exists, it is shown that the vertical diathermal 
partition may reduce the heat-transfer rate by 50 percent. For 
the case of square cavity, the numerical study of Zimmerman 
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and Acharya (1987) describes the effect of finitely conducting 
buffels attached on cavity horizontal walls on the cavity heat 
transfer. They also compared their numerical finite-difference 
results with the experimental data of Bajorek and Lloyd (1982), 
and found that numerical and experimental data agreed well 
for perfectly conducting end walls. The significant discrepancy 
was encountered for adiabatic end-wall assumptions. Follow- 
ing work of Jetli and Acharya (1988) shows how different 
location and height of inner vertical partitions affect the cavity 
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Figure 1 Scheme of the rectangular cavity with two vertical 
partitions located in the middle of the cavity end walls 

104 Int. J. Heat and Fluid Flow, Vol. 15, No. 2, April 1994 



heat transfer. This study also describes the effect of different 
boundary conditions imposed on horizontal walls on cavity, 
Nusselt number and fluid-flow distribution. Finally, the work 
of Ciofalo and Karayiannis (1991) describes the effect of 
symmetric partitions protruding centrally from the cavity end 
walls on heat-transfer rates. The results are achieved for the 
Rayleigh number ranging from 104-107, cavity aspect ratios 
from 0.5--10 and for the variable partition height ranging from 
0-50 percent (two separate enclosures) of the total cavity height. 

Despite the many articles published in this field, no 
theoretical studies, dealing primarily with the suppression of 
the convection heat-transfer peaks occurring near the cavity 
top and bottom, have been published. Insufficient heat-transfer 
resistance in this area, especially in the lower part of the 
double-paned window cavity, allows the formation of 
condensation on the inside window pane. This is a 
phenomenon that considerably affects the window heat loss as 
well as the durability of wooden frames. 

The goal of this work is to determine numerically the effect 
of convection barriers (partitions), located in the mid-plane of 
the air cavity, on the cavity heat-transfer performance and, 
especially, on the local Nusselt number distribution. The 
numerical finite-difference approach was chosen and efficiently 
programmed to solve the Navier-Stokes equations and to 
investigate the temperature contours, stream lines and the local 
Nusselt number distribution inside a vertical air-filled cavity. 
As evaluated, under certain conditions, just small glass 
partitions may appreciably suppress the peak heat-transfer 
coefficient in the cavity. The higher local resistance will cause 
a new temperature distribution across the window and, 
consequently, will lead to possible elimination of the 
condensation formation on the inside window surface. 

P r o b l e m  d e s c r i p t i o n  

To obtain temperature and stream pattern profiles in the cavity, 
the Navier-Stokes equations, in simplified form with Boussi- 
nesq approximation involved, are solved numerically. The 
pressure elimination from the equations of motion leads to the 
well-known system of dimensionless equations for vorticity, 
energy and the stream function, that is, 

Ofl Ofl Of~ O0 0 2 f ~  O2f~ 
t- U + V - -  = G r - -  + + - -  (1) 

O'c - ~  O Y O Y - ~  O Y 2 
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oe roe 
U O--X + a-"Y = Pr \ a X  2 + ~-Y-2) (2) 

02V d2~p 
-~z = ~ 4 ,vy' (3) 

where, 

d~  d~  
v v =  - a T  

In the preceding equations the dimensionless variables are 
defined as follows: 

• Cartesian coordinates in the vertical direction, X = x/H, 
and in the horizontal direction, Y= y/H 
• Vorticity, f~ = H2tolv 
• Temperature, 0 = ( t  - tz)/(t t - t2) 
• Velocity in the vertical, X, direction, U = Hu/v 
• Velocity in the horizontal, Y, direction, V = Hv/v 
• Stream function, • = ~/v 
• Time, T = "~*v/H 2 

Based on these definitions, the corresponding boundary 
conditions for the rectangular cavity, depicted in Figure 1, can 
be expressed in dimensionless form. 

1. z = O . . . O = O o ,  f~=Qo,  U = V = O , ~ = ~  o 
2. z > 0... 

OOIOX = U = V = 0 for X = O, 0 < Y < LIH 

OO/OX = U = V = 0 for X = 1, 0 < Y < L/H 

O =  l a n d U = V = O f o r O < X < l , Y = O  

O = 0 a n d U = V = 0 f o r 0 < X < l , Y = L / H  

For the partition region: 

U = V = 0, and the energy balance for the (very thin vertical) 
partition: 

dO/d Y)LEFr = Kd®/O Y)PAitT ---- ~O/d Y)RIGtlT 

K = kp/k denotes the partition-air conductivity ratio, t~rr 
Rmnr describe heat flux at the partition interface and pARr is 
related to the heat flux through the partition itself in the 
horizontal, Y, direction. 

N o t a t i o n  

b partition height, in percent of the total cavity 
height H 

Gr Grashof number based on the cavity height = gp 
( t  I - -  t2)H3/v 2 

g gravitational acceleration 
H cavity height 
h peak convection heat-transfer coefficient 
h=,,, mean convection heat-transfer coefficient 
k(kp) air (partition) thermal conductivity 
L cavity width 
Nu peak Nusselt number in the cavity with two 

partitions based on the cavity height 
Num,~ peak Nusselt number in the simple cavity without 

partitions based on the cavity height 
NUm..a mean Nusselt number based on cavity 

height = hH/k 
Pr Prandtl number 
R cavity aspect ratio = H/L 

t 
t1(2) 
u(V) 

v(V) 

x(X) 

.v(r) 

fluid temperature 
hot (cold) side-wall temperature 
dimensional (dimensionless) velocity component 
in the vertical direction 
dimensional (dimensionless) velocity component 
in the horizontal direction 
dimensional (dimensionless) Cartesian coordi- 
nates in the vertical direction 
dimensional (dimensionless) Cartesian coordi- 
nates in the horizontal direction 

Greek letters 

# 
0 
V 
~,(v) 
t*(t) 
o~tl) 

volumetric thermal expansion coefficient 
dimensionless temperature 
kinematic viscosity 
dimensional (dimen~nless) stream function 
dimensional (dimensionless) time 
dimensional (dimensionle~) vorticity 
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A n a l y s i s  

The task solved by the program is geometrically symmetrical. 
This makes numerical calculations faster and more accurate. 
In all cases evaluated, the cavity horizontal walls (top and 
bottom) are considered to be adiabatic and vertical walls 
isothermal. The partitions are located in the middle of the 
horizontal walls, their thickness is equal to the step size in the 
horizontal, Y, direction (1/32 of the cavity width L) and are 
made of glass. Both partitions have an equal height (length), b, 
expressed in percent of the total cavity height, H. 

Local Nusselt numbers are evaluated from the definition in 
the form Nu =hH/k= ~®/aY)w=,, and the cavity mean 
Nusselt number is determined using the Simpson rule to 
integrate the local Nusselt numbers along the cavity side walls. 
The detailed validation of the methodology used and the 
computational accuracy is given in Novak and Nowak (1993); 
consequently, just brief note is given here. 

Based on several tests with various grid densities, the 
202 x 32 grid was chosen to represent both the fluid-flow 
pattern, the cavity peak and mean Nusselt numbers. An 
extrapolation study showed that the evaluation error should 
be less than 10 and 2 percent for the peak and mean Nusselt 
numbers, respectively. Residual errors in steady state were 
evaluated at each grid point for all equations solved. For the 
temperature equation, the value of the maximum residue 
divided by the smallest equation term at the same grid point 
did not exceed 5.6/105. Under these conditions, the difference 
between the mean Nusselt numbers evaluated independently 
for the hot and cold vertical walls never exceeded 0.5 percent. 
Regardless of initial conditions, it was found that the solution 
is unique and stable for a simple rectangular cavity without 
partitions. However, for a cavity with two small partitions (of 
height up to 5 percent of H) and the multicellular fluid flow 
regime, the steady-state multicellular flow pattern (number of 
vortices) can be slightly affected by the initial conditions. 
Nevertheless, this happened only twice and, in addition to it, 
nearly no changes either in the cavity peak or mean Nusselt 
number values were observed. For this reason this effect will 
not be further pursued in this article. 

As there are no available results known to the authors of this 
work on slender cavities (R > 15) with partitions, the present 
calculations are, in Figure 2, compared against available data 
for the case of the simple cavity without partitions. In Figure 
2 the mean Nusselt number, Nu . . . .  = h . . . .  H/k, is shown as 

V a r i o u s  f l o w  r e g i m e s  in c a v i t y  
no par t i t ions ,  f luid - air ( P r - 0 . 7 1 )  
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Figure 2 Mean  Nusselt numbers in the caviw wi thout  inner 
partitions 
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Figure 3 Peak Nusselt numbers in the cavity w i thout  inner 
partitions 

a function of the cavity aspect ratio, R = H/L, with the 
Grashof number based on the cavity height, Gr = 
g/~(t~ - t2)H3/v 2, as a parameter. The comparison of present 
calculations with numerical data of Korpela etal.  (1982) and 
Lee and Korpela (1983) shows a very good agreement between 
results achieved. Some of the experimental measurements by 
EISherbiny etal.  (1982) on the cavity with highly conducting 
top and bottom, for aspect ratios, R, ranging from 5-110 are 
also depicted in Figure 2. As shown, their experimental data 
do not differ from present numerical results by more than 5 
percent. Compared with EISherbiny's experimental results, all 
numerical calculations reported here were performed on the 
cavity with the adiabatic top and bottom. However, as proved 
by numerous calculations, for the range of aspect ratios 
investigated, different boundary conditions imposed on 
horizontal cavity walls do not affect the cavity mean Nusselt 
number by more than 4 percent. Figure 2 also shows the 
various fluid flow regimes that may exist in slender cavities. In 
the conduction regime, the narrower the cavity is the higher 
the heat transfer through this cavity. Sufficiently far from the 
multicellular-conduction boundary in the conduction regime, 
the heat transfer approaches the conduction limit with the mean 
Nusselt number given only as a function of the cavity aspect 
ratio, Nu,~,, = R. Contrarily, in the multiccllular regime, the 
mean Nusselt number strongly depends on the Grashof number 
value but near the multicellular-conduction boundary remains 
almost unaffected by the cavity aspect ratio change. 

Figure 3 shows the cavity peak (local maximum) Nusselt 
numbers for the same aspect ratios and Grashof numbers as 
in Figure 2. The comparison of present calculations on 
202 x 32 grid with two available numerical values of Lee and 
Korpela (1983) on 129 x 17 grid shows that their data fall 
below present peak Nusselt numbers. This discrepancy is 
probably because of the different grid sizes in the vertical 
direction (Lee and Korpela 129, present study 202), from which 
the peak Nussclt number is strongly dependent. 

R e s u l t s  

To examine how two glass partitions, both of the same height, 
b, located in the middle of cavity horizontal walls, affect the 
fluid flow and temperature distribution, the partition boundary 
conditions (see problem description) were imposed on the 
program calculations. As the task is symmetrical along the 
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cavity centerpoint, just the fluid flow at the one partition 
vicinity is discussed further. 

The results, for both the so-called multicellular and the 
conduction regimes, are shown in Figures 4 and 5, respectively. 

Figure 4 gives detailed information of how the variable 
height of partition b (b -- 0, 5, 10 or 20 percent of H) changes 
the multicellular fluid flow structure inside the cavity. As 
already mentioned, this regime exists as the consequence of the 
hydrodynamic instabifity, and the heat is transferred along the 
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finite number of convection cells. The comparison of Figures 
4b-d indicates that the number of these cells is affected by the 
partition height. The higher the partition is, the more obvious 
the flow pattern change. The partition apparently squeezes the 
cavity height, and pushes the fluid-flow pattern from 
multicellular to the unicellular transition regime (Figure 4d). 
The zoomed views of local Nusselt numbers depicted in Figure 
4 show that the partition reduces the cavity peak Nusselt 
number (approximately by 30 percent) and shifts the peak 
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Figure 4 Temperature, stream lines and local Nusselt numbers in the cavity wi th  two  thin glass partitions located in the middle of 
end walls; Gr -- 2.5 x 10 s, R = 22, and the height of partitions, b, equal of (a) b -- 0%, (b) b = 5%, (c) b = 10% or (d) b = 20% of the total 
cavity height H 
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Figure 5 Temperature, stream lines and local Nusselt numbers in the cavity with two very thin glass partitions located in the middle of 
end walls; Gr --- 2.5 x 10 s, R = 35 and the height of partitions, b, equal of (a) b = 0%, (b) b = 20% of the total cavity height H 

heat-transfer area from the cavity horizontal wall to the 
partition top. The shapes of isotherms also suggest that the 
heat transfer at the partition vicinity is very similar to that 
described by the conduction fluid-flow regime with very low 
flow velocities developed. 

The fluid-flow distributions in cavities with existing 
conduction flow regime are shown in Figure 5. 

Figure 5a depicts the simple rectangular cavity without inner 
partitions, and Figure 5b shows the cavity equipped with two 
inner partitions both of the same height, b = 20 percent of H. 
The comparison of these figures suggests that, in the 
conduction regime, the partition only shifts the maximum 
heat-transfer area away from the cavity horizontal surface to 
the partition top and nearly does not affect the peak Nusselt 
number value. Although not shown, these conclusions are valid 
for shorter partitions (b < 20 percent of H) too. In addition to 
it, the comparison of Figures 5a and b also shows that even 
these long partitions (20 percent of H) do not change the 
conduction fluid-flow structure existing in the cavity; that is, 
no noticeable change in the location of the multicellular- 
conduction boundary (see Figure 2), resulting from the 
partition presence, was observed. 

Compared with the simple cavity without partitions, it was 
further evaluated that, in the multicellular (Figures 4a--c) or in 
the transition regime (Figure 4d), two small partitions both of 
the same height (b < 10 percent of H) decrease the mean 
Nusselt number value by up to 6 percent. However, in the 
conduction fluid flow regime (Figure 5), the change of the mean 
Nusselt number, as the consequence of partition presence, is 
negligible. Corresponding dependencies are depicted in Figure 
6. As numerous calculations and also the detailed comparison 
of Figures 2 and 6 suggest, for cavities with aspect ratios higher 
than the conduction-multicellular boundary indicates (conduc- 
tion regime), the effect of partitions on the mean Nusselt 
number change is negligible. The mean Nusselt number for the 
cavity with partitions is nearly the same as that evaluated for 

the simple cavity without partitions. However, for cavities with 
aspect ratios lower than indicated by the conduction-multi- 
cellular boundary (multicellular regime), the cavity mean 
Nussclt number reduction, resulting from partition presence, is 
obvious. The wider the cavity is, the greater the effect of 
partitions on the total heat-transfer reduction. 

The results of calculations for corresponding peak Nussdt 
numbers in the cavity with partitions and for GrH = 1 x 108, 
are depicted in Figure 7. As the comparison of Figures 2 and 
7 for various aspect ratios suggests, the peak Nussclt number 
is also noticeably affected by partitions primarily in wider 
cavity in which the multicellular regime exists. In addition, 
Figure 7 also suggests that the peak Nusselt number depends 

Mean Nu vs. Cavity Aspect Ratio 
2 glass partitions of height b in cavity 
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Figure 6 Mean Nusealt number in the cavity with two vertical 
partitions located in the middle of the opposite adiabatic walls 
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Peak Nu vs. partition height b 
2 glass partitions 
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Figure 7 The effect of variable height, b, of partitions on the peak 
Nusselt number for Gr = 1.0 x 10 s 

strongly on the partition height, b, approximately for b < 5 
percent of H. Calculations confirmed that these conclusions are 
valid for all Grashof numbers considered. 

Finally, evaluated peak Nusselt numbers, for the range of 
aspect ratios and the Grashof numbers investigated, are 
depicted in Figure 8. In this figure, the ratio of Nu/NUm= x (the 
ratio of the peak Nusselt number in the cavity with two 
partitions and the peak Nusselt number in the same cavity 
without partitions) is depicted as a function of the cavity aspect 
ratio, R = H/L .  Grashof number, Gr, is a parameter for each 
curve. For each Grashof number, just one curve is used to 
represent the peak Nusselt numbers for the variable heights of 
partitions, b, in the range of 5 < b < 20 percent of H. The 
reason is that for b > 5 percent of H the peak Nusselt number 
value remains nearly unchanged regardless of the partition 
height (see Figure 7). Again, for all Grashof numbers 
investigated, the comparison of Figures 2 and 8 shows that 
partitions appreciably reduce the peak Nusselt numbers, 
especially in cavities with existing muiticellular fluid-flow 
regime. However, in very narrow cavities the effect of inner 
partitions on the peak Nusselt number suppression becomes 
very weak. 

Peak Nu vs. Cavity Aspect Ratio 
2 glass partitions of height b in cavity 
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Figure 8 Peak Nusselt number in the cavity with two vertical 
partitions located in the middle of the opposite adiabatic walls 
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C o n c l u s i o n  

Heat transfer by natural convection in slender rectangular 
cavity with two thin glass partitions (convection barriers), 
located in the middle of cavity horizontal adiabatic walls (cavity 
top and bottom), was numerically investigated. Fluid-flow 
distribution, cavity mean Nusselt number and especially the 
peak Nusselt number values were determined. The following 
conclusions emerge: 

1. Two small partitions can appreciably reduce the cavity peak 
Nusselt number values. This could be important especially 
for the double-paned window design, where the local 
heat-transfer performance could be meaningfully improved. 

2. In both the conduction and multicellular regimes, resulting 
from the partition presence, the peak heat-transfer area is 
shifted from the top and bottom of the air cavity to the 
partition end. 

3. Compared with the simple rectangular cavity without 
partitions, in the range of aspect ratios investigated, two 
small partitions decrease the cavity mean Nnsselt number 
value by up to 6 percent provided that the fluid-flow regime 
is multicellular. In the conduction fluid-flow regime, the 
change of the mean Nusselt number, as the consequence of 
partition presence, is negligible. 
Compared with the simple rectangular cavity without 
partitions in which the multicellular fluid-flow regime exists, 
if two small thin glass partitions, each of the height of 5 
percent of the total cavity height, are located in the middle 
of cavity end walls, then the peak Nusselt number is 
decreased approximately by 20 percent. In reality, lower heat 
transfer from the room air to the window cavity, in the area 
where the cavity heat-transfer peak exists, will cause a lower 
temperature drop between the room air and the inner 
window pane. Consequently, a significant reduction of the 
condensation formation on this window pane will be 
achieved. 

4. 

A c k n o w l e d g m e n t  

The authors gratefully acknowledge the financial support from 
the Renewable Energy Branch of the Department of Energy, 
Mines and Resources, Canada. 

R e f e r e n c e s  

Bajorek, S. M. and Lloyd, J. R. 1982. Experimental investigation of 
natural convection in partitioned enclosure. 3". Heat Transfer, 104, 
527 

Bejan, A. 1982. Natural convection heat transfer in porous layer with 
internal flow obstructions. Int. J. Heat Mass Transfer, 24, 815-822 

Bergholz, R. F. 1978. Instability of steady natural convection in a 
vertical fluid layer. A S M E  J. Heat Transfer, 04, 743 

Chu, H. N. S. and Churchill, S. W. 1977. The development and testing 
of a numerical method for computation of laminar natural 
convection in enclosures. Computers and Chemical Engineering, 1, 
103-108 

Ciofalo, M. and Karayiannis, T. G. 1991. Natural convection heat 
transfer in a partially--or completely--partitioned vertical rect- 
angular enclosure. Int. J. Heat Mass Transfer, 34, 167-179 

EISherbiny, S. M, Ralthby, G. D. and Hollands, K. G. T. 1982. Heat 
transfer by natural convection across vertical and inclined air layers. 
A S M E  J. Heat Transfer, 104, 159-167 

Frederick, R. L. 1989. Natural convection in an inclined square 
enclosure with a partition attached to its cold wall. Int. J. Heat Mass 
Transfer, 32, 87-94 

Int. J. Heat and Fluid Flow, Vol. 15, No. 2, April 1994 109 



Slender rectangular cavities: E. S. Nowak and M. H. Novak 

Frederick, R. L. and Valencia, A. 1989. Heat transfer in a square 
cavity with a conduction partition on its hot wall. Int. Commun. 
Heat Mass Transfer, 16, 347-354 

Jetli, R. and Acharya, S. 1988. End wall effects on thermal stratification 
and heat transfer in a vertical enclosure with offset partitions. 
Canadian J. Chem. Eng., 66, 563-571 

Korpela, S. A., Lee, Y. and Drummond, J. E. 1982. Heat transfer 
through a double paned window. ASME J. Heat Transfer, 104, 
539-544 

Lee, Y. and Korpela, S. A. 1983. Multiceilular natural convection in 
a vertical slot. J. Fluid Mechanics, 126, 91-121 

Newdl, M. E. and Schmidt, F. W. 1970. Heat transfer by natural 
convection within rectangular enclosures. ASME J. Heat Transfer, 
92C, 159--167 

Novak, M. H. and Nowak, E. S. 1993. Natural convection heat 
transfer in slender window cavities. ASME J. Heat Transfer. 115, 
476-479 

Oosthuizen, P. H and Paul, J. T. 1985. Free convection heat transfer 
in a cavity fitted with a horizontal plate on the cold wall. Advances 
in Enhanced Heat Transfer--1985, ASME HTD, 43, 101-107 

Phillips, T. N. 1984. Natural convection in an enclosed cavity. 
Journal of Computational Physics, 54, 365-381 

Scozia, R. and Frederick, R. L. 1991. Natural convection in slender 
cavities with multiple fins attached to an active wall. Numerical Heat 
Transfer, 20, 127-158 

Shakerin, S., Bohn, M. and Loehrke, R. I. 1986. Natural convection 
in an enclosure with discrete roughness elements on a vertical heated 
wall. Prec. 8th International Heat Transfer Conference, 4, 1519-1525 

Wilkes, J. O. and Churchill, S. W. 1966. The finite-difference 
computation of natural convection in a rectangular enclosure. 
AIChE J., 12, 161-168 

Zimmerman, E. and Acharya, S. 1987. Free convection heat transfer 
in partially divided vertical enclosure with conducting end walls. Int. 
J. Heat Mass Transfer, 30, 319-331 

110 Int. J. Heat and Fluid Flow, Vol. 15, No. 2, April 1994 


